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Abstract. In this paper we consider a class of systems of two coupled real scalar fields in
bidimensional spacetime, the main motivation being the study of the classical or linear stability
of soliton solutions. First, we present the class of systems and comment on the topological
profile of soliton solutions one can find from the first-order equations that solve the equations of
motion. We then follow the standard approach to classical stability to introduce the main steps
one needs to obtain the spectra of Schrödinger operators that appear in this class of systems. We
consider a specific system, from which we illustrate the general calculations and present some
analytical results. We also consider another, more general, system and present an investigation
that introduces new results and offers a comparison with former investigations.

1. Introduction

Lagrangian systems described by coupled scalar fields are recently gaining renewed
attention. In the case of real fields, in particular, the work presented in [1–4] has introduced
a specific class of systems of two coupled real scalar fields. In contrast to older models, the
class of systems introduced in the above papers is very peculiar, at least in bidimensional
spacetime, where it has the following general properties: first, the corresponding equations
of motion are solved by field configurations obeying first-order differential equations;
second, the classical configurations that solve the first-order equations have a minimum
energy and are classically or linearly stable. On the other hand, the first-order differential
equations can be seen as a dynamical system, and so we can take advantage of all the
mathematical tools available to dynamical systems to deal with the set of first-order equations
and, consequently, with solutions to the equations of motion.

For the specific issue concerning classical or linear stability, in [2, 4] a general way
of investigating stability was presented. In this case, the investigation relies essentially on
proving that the associate Schrödinger operator is positive semi-definite. This procedure
of implementing stability investigations [5] is distinct from the so-called standard approach
[5, 6], where one usually obtains the complete set of eigenvalues of the Schrödinger operator.

However, we know that the standard approach is important since it sets forward
results one needs to implement quantum corrections, since in this case one has to know
explicitly the spectrum of the corresponding Schrödinger operator [5, 6]. We therefore
think that a standard investigation of classical stability of systems of two real scalar fields
belonging to the class of systems already introduced in [1–4] is welcome, not only to present
comparison with former investigations but also to unveil the full spectra of the corresponding
Schr̈odinger operators. Within this context, the main motivation of this paper is to deal with
issues concerning the finding of spectra of Schrödinger operators that naturally appear in the
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standard approach to the linear stability of systems belonging to the class of coupled fields
introduced in [1–4]. As we shall show, in this class of systems the Schrödinger operators
can be written in terms of first-order operators, and this property eases the calculation toward
obtaining the corresponding energy spectra.

Evidently, to implement the standard approach to linear stability we have to deal with
specific systems. However, to make this investigation as general as possible, we have
organized the work as follows. In section 2 we present the class of systems of two coupled
real scalar fields and comment on the topological profile of the classical configurations. In
section 3 we investigate linear stability within the standard approach, and shed new light on
the issue concerning the unveiling of the full spectra of Schrödinger operators that appear
in the class of systems introduced in the former section. In order to illustrate the general
calculations, in section 4 we examine a particular system of two coupled fields. We end
this paper in section 5, where we present another investigation, in which we deal with a
more general system, not belonging to the class of systems introduced in section 2. Each
section contains some comments and conclusions.

2. Systems of two real scalar fields

Let us start with the Lagrangian density

L = 1
2∂αφ∂

αφ + 1
2∂αχ∂

αχ − U (1)

whereU = U(φ, χ) is the potential, in general a nonlinear function of the two fieldsφ

and χ . Here we are using natural units, and so ¯h = c = 1, and the metric is such that
xα = (t, x) andxα = (t,−x). The class of systems introduced in [1–4] is defined by the
following potential

U(φ, χ) = 1
2H

2
φ + 1

2H
2
χ (2)

whereH = H(φ, χ) is a smooth but otherwise arbitrary function of the fieldsφ andχ , and
Hφ = ∂H/∂φ, Hχ = ∂H/∂χ .

The Euler–Lagrange equations, that is, the equations of motion that follow from the
above system are given by

∂2φ

∂t2
− ∂

2φ

∂x2
+HφHφφ +HχHφχ = 0 (3)

and

∂2χ

∂t2
− ∂

2χ

∂x2
+HφHχφ +HχHχχ = 0 (4)

and for static field configurations they change to

d2φ

dx2
= HφHφφ +HχHφχ (5)

and

d2χ

dx2
= HφHχφ +HχHχχ . (6)

Recall that static field configurations are configurations written in their rest reference frame.
For static field configurations, the energy can be cast to the formE = EM +E′, where

EM = H(φ(∞), χ(∞))−H(φ(−∞), χ(−∞)) (7)
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and

E′ = 1

2

∫ ∞
−∞

[(
dφ

dx
−Hφ

)2

+
(

dχ

dx
−Hχ

)2
]
. (8)

As we have already learned from [4], we impose the conditions

dφ

dx
= Hφ dχ

dx
= Hχ (9)

and in this case we see that the energy reaches its lower boundEM , and the above first-order
equations (9) solve the corresponding equations of motion (5) and (6).

Before investigating classical stability, let us first comment on the issue concerning
topological properties of soliton solutions. From the above calculations on the energy of
the corresponding static fields, we see that field configurations obeying the pair of first-
order equations have a minimum energy that depends only on the difference between
the two asymptotic behaviours ofH(φ, χ). In this case, classical pairs of static field
configurations having finite but nonzero energy must necessarily obey the topological
property of connecting distinct minima of the corresponding potential. These types of
field configurations are called topological solutions [6]. However, we know that systems of
two coupled scalar fields may have nontopological solutions [6], and in this case the field
configurations must have the same asymptotic behaviour. In the above class of systems,
however, static field configurations obeying the first-order differential equations (9) cannot
have nontopological profiles, because this would give zero energy to the pair of solutions,
and zero is the energy value of the vacuum states. This result is very interesting, because
it leads us to the fact that the search for classical solutions of the equations of motion via
first-order equations (9) evidently does not give us the full set of physical solutions, and
certainly no nontopological solutions.

Another interesting point comes from considering the set of first-order equations as a
dynamical system. This procedure allows us to unveil the full set of singular points, together
with the stability properties of each one of these points. As we can see from the potential
(2), the set of singular points is identified with the vacuum manifold of the corresponding
field theory. Then, once we know the vacuum manifold and the classification of each one
of its points as stable, unstable and saddle points, we have everything we need to deal
with finding explicit soliton solutions. The route toward finding explicit solutions can, for
instance, follow the trial-orbit method introduced in [7]. However, since here we are dealing
with first-order equations this trial-orbit method becomes easier to implement than in the
original work [7].

3. Classical stability

Let us now focus attention on the issue concerning classical or linear stability. In this
case we consider̄φ = φ̄(x) and χ̄ = χ̄(x) as a pair of static solutions to the above
first-order differential equations. Here we considerφ(x, t) = φ̄(x) + ηn(x) cos(wnt) and
χ(x, t) = χ̄(x) + ξn(x) cos(wnt) in order to get from the equations of motion (3) and (4)
and to work up to first order in the fluctuations,

S2

(
ηn
ξn

)
= w2

n

(
ηn
ξn

)
. (10)

This is a Schr̈odinger equation, andS2 is the Schr̈odinger operator, given by

S2 = − d2

dx2
+ V (11)
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where the potentialV has the form

V =
(
V11 V12

V21 V22

)
(12)

and the matrix elements can be written as

V11 = H̄ 2
φφ + H̄ 2

χφ + H̄φH̄φφφ + H̄χ H̄φφχ (13)

and

V12 = V21 = H̄φφH̄φχ + H̄χχ H̄φχ + H̄φH̄φφχ + H̄χ H̄φχχ (14)

and

V22 = H̄ 2
χχ + H̄ 2

φχ + H̄φH̄φχχ + H̄χ H̄χχχ . (15)

In the above expressions a bar overH means that the corresponding quantity has to be
calculated at the classical static valuesφ = φ̄(x) andχ = χ̄(x), and soVij = Vij (x), for
i, j = 1, 2.

On the other hand, as was already shown in [2, 4], from the first-order equations we
can introduce the first-order operators

S±1 = ±
d

dx
+ v (16)

wherev is given by

v =
(
Hφφ Hφχ
Hφχ Hχχ

)
. (17)

Here it is not difficult to check that these first-order operators are adjoint of each other, and
that S2 = S+1 S

−
1 . This is important because it proves that the Schrödinger operatorS2 is

positive semi-definite, and this is the result one needs to ascertain that the pair of solutions
φ̄ and χ̄ is classically or linearly stable.

To investigate the spectrum of the Schrödinger operatorS2 we have to go further into this
problem, and here the main difficulty concerns solving the Schrödinger equation (10). The
task is not immediate since in the case of two coupled fields the fluctuationsη andξ are also
coupled, in general, and so the first issue we have to deal with concerns the diagonalization
at the second-order Schrödinger operator, a calculation to be done by finding the normal
mode fluctuations.

In the above class of systems of two coupled fields, however, we take advantage of
the presence of the corresponding first-order operatorsS±1 , and so the task of finding the
normal mode fluctuations is greatly simplified. This is so because here we can deal with the
simpler task of just diagonalizing thev matrix which appears in the first-order operators.
In this case the result allows us to write

S̄±1 = ±
d

dx
+
(
v+ 0
0 v−

)
(18)

where the diagonal elements are given by

v± = 1
2(H̄φφ + H̄χχ )± [ 1

4(H̄φφ − H̄χχ )2+ H̄ 2
φχ ]1/2. (19)

If we use the notationη± for the pair of normal mode fluctuations, then we have to deal
with the following Schr̈odinger equations

S̄±2 η± = w2η± (20)
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where the Schr̈odinger operators̄S±2 are now given by

S̄±2 = −
d2

dx2
+ V± (21)

with the potentials

V± = v2
± +

dv±
dx

. (22)

Before paying attention to specific systems, let us reason a little more on the issue
concerning linear stability. As we can see from the above investigation, to unveil the spectra
of S̄±2 we recognize that the square root that appears inv± complicates the calculation, and
will certainly require numerical investigations. To circumvent this difficulty and perhaps
give explicit analytical results, we should focus attention on avoiding the square root inv±.
Here we see that the simplest case where the square root inv± disappears is when̄Hφχ = 0.
However, since we are dealing with systems of two coupled scalar fields, to work with
nontrivial systems we must haveHφχ nonzero, in order to account for interactions between
the two fields. In this way, to get tōHφχ = 0, the pair of classical solutions̄φ and χ̄ must
be very specific. However, in general the quantityH̄φχ does contribute, and so we must
first deal with the quantity

R = 1
4(Hφφ −Hχχ)2+H 2

φχ (23)

which appears inside the square root inv±. Here we should work out a way to prevent the
classical pairφ̄ andχ̄ remaining inside the square root. This reasoning will become clearer
in the following, where we deal with a specific system.

4. An example

As a particular example, let us consider the system defined by the function

H(φ, χ) = λ( 1
3φ

3− a2φ)+ 1
2µφχ

2. (24)

In this case the potential that specifies the system has the form

U(φ, χ) = 1
2λ

2(φ2− a2)2+ 1
2λµ(φ

2− a2)χ2+ 1
8µ

2χ4+ 1
2µ

2φ2χ2. (25)

Our main motivation to work with the above system is that it is similar to the model already
investigated in [7], for which a standard stability investigation has already been carried out
[8], and that has pairs of soliton solutions [1] that are very similar to the pairs considered
in [8]. This motivation broadens with the fact that this specific system was shown to be
useful not only in field theory [3] but also in condensed matter [4].

In this case the first-order equations become

dφ

dx
= λ(φ2− a2)+ 1

2µχ
2 (26)

and

dχ

dx
= µφχ. (27)

This system was already investiagted in [1], and some pairs of soliton solutions were
presented. In particular, a pair of solutions is

φ̄1(x) = −a tanh(λax) χ̄1(x) = 0. (28)
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Figure 1. The two pairs of soliton solutions.

We recall that this pair of solutions introduces no rectrictions on the two parametersλ an
µ. Another pair of solutions is

φ̄2(x) = −a tanh(µax) (29)

χ̄2(x) = ±a
√

2

(
λ

µ
− 1

)
sech(µax). (30)

For this second pair of solutions the parametersλ andµ are restricted to satisfyλ/µ > 1.
Note that the limitλ/µ→ 1 transforms the second pair of solutions into the first one. Note
also that for the second pair of solutions the field configurations obey

φ̄2
2 +

1

2

(
λ

µ
− 1

)−1

χ̄2
2 = a2. (31)

We see that both pairs of solutions connect the points(a, 0) and(−a, 0) in the(φ, χ) plane,
the first by a straight line, and the second by a elliptical line, as shown in figure 1.

As we can see, these two pairs of soliton solutions belong to the same topological sector,
and have the same energy [1, 4]. Furthermore, the solutions are very similar to the pairs
of classical configurations investigated in [8], and so it seems interesting to compare these
calculations with the ones introduced there. Here we recall that we already know that the
above pairs of solutions are stable [2, 4], while the pairs considered in [8] were shown to be
unstable, at least in the region of parameters considered. This is an interesting result, since
it shows that, in contrast to the class of systems defined by the functionH = H(φ, χ), older
systems such as the one presented in [7] may have no classically stable soliton solutions,
and this is true at least in some region of parameter space.

To obtain the spectra of the corresponding Schrödinger operators we useH(φ, χ) given
by (24) to write Hφφ = 2λφ, Hχχ = µφ, andHφχ = µχ . For the first pair of solutions
we obtainH̄φχ = 0, and so the equations for the fluctuations are already decoupled. This
is very specific, and appears because of the classical valueχ̄ = 0. In this case we obtain

v+ = −2λa tanh(λax) (32)

and

v− = −µa tanh(λax). (33)

For the second pair of solutions the fluctuations are coupled, and so first we consider
R as given by equation (23). Here we have

R = µ2

(
λ

µ
− 1

2

)2

φ̄2
2 + µ2χ̄2

2 . (34)

We use the orbit (31) to rewrite the above quantity as

R = µ2

(
λ

µ
− 3

2

)2

φ̄2
2 + 2µ2

(
λ

µ
− 1

)
a2. (35)

In this case the parameters obeyλ/µ > 1, and so the only way of removing the classical
field from the square root is by setting the coefficient ofφ̄ to zero. Here we get the relation
λ = 3

2µ. This is a very interesting point in parameter space since it equals the amplitude
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of the two classical configurations, as we can immediately see from the second pair of
solutions; also, the valueλ = 3

2µ changes the general elliptical profile of the orbit (31) to
the very particular case of a circular one.

For the first pair of solutions, the Schrödinger operators corresponding to fluctuations
about theφ andχ fields are given by, respectively,

S̄
(1,1)
2 = − d2

dx2
+ 4λ2a2− 6λ2a2 sech2(λax) (36)

and

S̄
(1,2)
2 = − d2

dx2
+ µ2a2− µ(λ+ µ)a2 sech2(λax). (37)

This system has already been investigated in [1]. From the results obtained there we see
that, forλ = 3

2µ, fluctuations about theφ field include the zero mode, and a bound state at
the valuew2 = 3

49µ2a2, with the continuum starting at 9µ2a2. For fluctuations about the
χ field, only the zero mode is present, and the continuum starts at the valueµ2a2.

For the second pair of solutions, the Schrödinger operators corresponding to fluctuations
about the normal modes can be written as

S̄
(2,±)
2 = − d2

dx2
+ 5µ2a2∓ 4µ2a2 tanh(µax)− 6µ2a2 sech2(µax). (38)

In this case we see [9] that these fluctuations have zero modes and no other bound states.
Furthermore, the continua start atµ2a2, and are formed by reflecting states in the interval
µ2a2 and 9µ2a2, and free states for energies greater than 9µ2a2.

Before ending this section, we note that fluctuations about the first pair of solutions are
described by reflectionless potentials, for which the continua start at 9µ2a2 andµ2a2, as
shown in figure 2.

On the other hand, fluctuations about the second pair of solutions are described by
potentials that accommodate reflecting states, and these reflecting states appear between the
valuesµ2a2 and 9µ2a2, as depicted in figure 3.

This property is in fact independent of the particular ratio between the two parameters:
for λ/µ > 1, it is not hard to show that fluctuations about the second pair of solutions are
always described by potentials that accommodate the reflecting states betweenµ2a2 and
4λ2a2, which are exactly the values where the continua of the reflectionless potentials that
describe fluctuations about the first pair of solutions start.

Figure 2. Potentials for the first pair of solutions. Figure 3. Potentials for the second pair of solutions.
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5. A general system

Let us now consider another system, defined by the potential

U(φ, χ) = 1
4(φ

2− 12)2+ 1
2f χ

2+ 1
4λχ

4+ 1
2d(φ

2− 1)χ2. (39)

This is the pontential considered in [8], and here we use the same notation, withλ, f and
d real and positive. In this case we see that

U(φ, 0) = 1
4(φ

2− 1)2 (40)

and so with this system we obtain the pair of solutions

φ̄3(x) = tanh(x/
√

2) χ̄3 = 0. (41)

In [8] it was shown that this pair is unstable, at least in some region of parameter space.
We recall that the investigation carried out in [8] was mainly concerned with the stability of
another pair of solutions, of the same form as the one given by the second pair of solutions
in the former example. In that investigation, it was also shown [8] that when the parameters
of the system allow for a normal mode diagonalization that leads to analytical results, the
pair of solutions given by the above equation (41) is classically unstable.

Our main interest here is simpler, and concerns the investigation of whether there is
some region in parameter space where the above pair of solutions is classically or linearly
stable. In this case, the Schrödinger operators corresponding to small fluctuationsηn(x) and
ξn(x) described byφ(x, t) = φ̄3 + ηn(x) cos(wnt) andχ(x, t) = χ̄3 + ξn(x) cos(wnt) can
be cast to the following forms

S̄
(3,1)
2 = − d2

dx2
+ 2− 3 sech2(x/

√
2) (42)

S̄
(3,2)
2 = − d2

dx2
+ f − d sech2(x/

√
2). (43)

The first operator includes two bond states: the zero mode and another bound state at
w2 = 3

2. However, for the second operator we see that a set ofn = 0, 1, 2, ... bound states
can appear, wheren obeys

n < 1
2

[√
1+ 8d − 1

]
. (44)

This shows that the number of bound states depends only on the parameterd, and that there
is at least one bound state ford > 0. The energy of the bound states are given by

w2
n = f − 1

8

[√
1+ 8d − 1− 2n

]2
. (45)

To avoid instability we focus attention on the deepest bound state: here we see that to
ensure stability we have to impose the restriction

f > 1
4

[
1+ 4d −√1+ 8d

]
(46)

and this shows that there is room to choosed and f , keeping the corresponding pair of
solutions stable. Furthermore, we remark that since 1+ 4d is always greater than

√
1+ 8d

for d > 0, one cannot setf → 0 because this would unavoidably introduce instability.
On the other hand, stability does not impose any restriction on the sign ofd − f , and

this allows us to go a little further on this issue since ford − f > 0 the above potential has
other minima. To see this explicitly, let us note that the potential (39) also gives

U(0, χ) = 1
4 − 1

2(d − f )χ2+ 1
4λχ

4. (47)
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Here we see that ford − f 6 0 the points(φ2
0 = 1, χ = 0) are the only possible global

minima of the potential. However, ford − f > 0 there are other minima, atφ = 0 and

χ2
0 =

d − f
λ

(48)

and these minima can be local or global minima, depending on the value of the other
parameter,λ. For simplicity, let us suppose thatλ > (d − f )2. In this case the points
(±1, 0) are always global minima, but whenλ = (d − f )2 there are also global minima at
(0,±√1/(d − f )).

For d − f = r > 0, and forλ > r2 we can get another pair of solutions, of the same
type as the former one, given by

φ̄4 = 0 χ̄4(x) =
√
r

λ
tanh

(√
r/2x

)
. (49)

To investigate stability we procced as before: Here the Schrödinger operators are

S̄
(4,1)
2 = − d2

dx2
+
[

d

λ
r − 1

]
− d

λ
r sech2

(√
r/2x

)
(50)

S̄
(4,2)
2 = − d2

dx2
+ 2r − 3r sech2

(√
r/2x

)
. (51)

We see that̄S(4,2)2 is like S̄(3,1)2 , that is, it has zero mode and another bound state atw2 = 3
2r.

However, for the other Schrödinger operator the number of bound states is now controlled
by

n <
1

2

[√
1+ 8

d

λ
− 1

]
(52)

and so there is at least one bound state. From the energy of the deepest bound state we
obtain, to ensure stability of the corresponding pair of solutions,

d

λ
− 1

r
> 1

4

[
1+ 4

d

λ
−
√

1+ 8
d

λ

]
. (53)

This restriction implies thatλ < dr. Now, if we write λ = sr2 we obtain

16 s < d

r
= d

d − f (54)

and this implies that there are many possibilities of choosings without destroying the
stability of the corresponding pair of solutions. In particular, we can chooses = 1 to write
λ = r2 = (d−f )2, which shows that in this case the potential(39) presents four degenerate
global minima: two atχ = 0 andφ2 = 1, and two atφ = 0 andχ2 = 1/r = 1/(d − f ).

The above results show that when the system presents global minima at the four points
(±1, 0) and(0,±1/

√
r) we can have stable solitons joining the minima(±1, 0) by a straight

line with χ = 0 or the minima(0,±1/
√
r) by another straight line withφ = 0. This is

interesting, at least within the context of searching for defects inside defects, as recently
considered in [10], in the case of systems of the type considered in this section, and in [3],
in the case of systems belonging to the class of systems introduced in section 2. However,
this is another issue, which is currently under consideration.
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